ScienceDirect

Communication

Chemistry of tetracyanoethylene (TCNE): From TCNE to dicyanomethylacetate

Qi-Ying Lv ${ }^{\text {a }}$, Wei Li ${ }^{\text {a }}$, Shu-Zhong Zhan ${ }^{\text {a,* }}$, Jian-Ge Wang ${ }^{\text {b }}$, Jia-Yin Su ${ }^{\text {a }}$, An Ding ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, South China University of Technology, Guangzhou 510640, China
${ }^{\mathrm{b}}$ Department of Chemistry, Luoyang Normal University, Luoyang 471022, China

Received 25 October 2007; received in revised form 20 January 2008; accepted 30 January 2008
Available online 5 February 2008

Abstract

In the presence of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, the reaction of TCNE (tetracyanoethylene) with $\mathrm{CH}_{3} \mathrm{OH}$ forms a dicyanomethylacetate molecule, which has been obtained as one solvent molecule in one new compound $\left\{\left[\mathrm{Co}(\mathrm{bpy})_{2} \mathrm{CN}_{2}\right]\left[(\mathrm{NC})_{2} \mathrm{C}-\mathrm{CO}_{2} \mathrm{CH}_{3}\right]\right\} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})$. It was characterized by IR spectra, UV-Vis spectra, and cyclic voltammogram. Its structure was determined by X-ray crystallography: $\mathbf{1}$ crystallizes in $P 2(1) / n$ with $a=13.3368(17), b=12.5299(16), c=16.074(2) \AA, \alpha=90, \beta=94.6320(10), \gamma=90^{\circ}$, and $Z=2$. © 2008 Elsevier B.V. All rights reserved.

Keywords: N-ligand; Crystal structure; Co complex; Dicyanomethylacetate

1. Introduction

Tetracyanoethylene (TCNE) molecule is one of the most versatile organic compounds as it is used in many different reactions [1], due to its very low-lying π^{*} orbital. TCNE reacts with water in neutral solution to form tricyanoethanolate anion, $\left[\mathrm{C}_{2}(\mathrm{CN})_{3} \mathrm{O}\right]^{-}$[2]. In the presence of a metal ion, 2,3,3-tricyanocrylamidate, $\quad\left[(\mathrm{NC})_{2} \mathrm{C}=\mathrm{C}(\mathrm{CN})(\mathrm{CONH})\right]^{-}$, can be formed from TCNE [3]. On the other hand, the ability to accept one or two electrons to form simple anions in conjunction with its ability to bond to as many as four metal ions, leads to the formation of mixed-valence complexes; the reaction of radicals TCNE in conjunction with paramagnetic transition metal ions has produced some of the most remarkable molecular magnetic materials [4,5], such as ferromagnetic $\left(\mathrm{TCNE}^{--}\right)\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right.$] [6], or (TCNE $\left.{ }^{--}\right)_{2} \mathrm{~V}$, an organometallic ferrimagnet active beyond room temperature (T_{c} ca. 400 K) [7]. Recently, one new organic-based magnet $\left[\mathrm{Fe}(\mathrm{TCNE})_{2}\right] \cdot z \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(T_{\mathrm{c}}=100 \mathrm{~K}\right)$ was prepared by the reaction of TCNE and FeI_{2} [8], which

[^0]has the $\mathrm{NC}-\mathrm{C}-\mathrm{CN}$ bond angle of $121(1)^{\circ}$ in accord with its sp^{2} central carbon atom. Our interest focus on the reactivity of TCNE and electron-rich metal complexes to form discrete as well as polymeric charge-transfer compounds in which the donors and acceptors are coordinated through nitrile positions. With this mind, we have tried the reaction of TCNE, $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and bpy (2,2-bipyridine) with a molar ratio set of 1:1:2 in methanol, surprisingly, an novel product $1\left\{\left[\mathrm{Co}(\text { bpy })_{2} \mathrm{CN}_{2}\right]\left[(\mathrm{NC})_{2} \mathrm{C}-\mathrm{CO}_{2} \mathrm{CH}_{3}\right]\right\} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is obtained. In this work, we describe an unusual reaction of TCNE, and $\mathrm{CH}_{3} \mathrm{OH}$, as well as the structure, and properties of compound 1.

2. Results and discussions

2.1. Synthesis and general properties

Considering the typically similar reactivity of the TCNE molecule with paramagnetic transition metal centers, the reaction of TCNE ligand, $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and bpy in methanol provided an unexpectedly different result. In the presence of $\mathrm{H}_{2} \mathrm{O}$, TCNE reacts with $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and bpy in $\mathrm{CH}_{3} \mathrm{OH}$ solvent to give a novel compound $\mathbf{1}$ containing
one $\left[\mathrm{Co}(\mathrm{CN})_{2}(\mathrm{bpy})_{2}\right]$ unit, one dicyanomethylacetate molecule, and two water molecules. To our knowledge, this is the first example of the synthesis of dicyanomethylacetate from TCNE.

The possible mechanism of the formation of dicyanomethylacetate is illustrated by Scheme 1. The reduction of TCNE by $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ forms its anion, [TCNE] (A). In the presence of $\mathrm{H}_{2} \mathrm{O}$, [TCNE] lost two CN^{-}groups, which were transferred to the Co center and gave an active intermediate B. Furthermore, B reacts with $\mathrm{CH}_{3} \mathrm{OH}$ at mild condition to provide a dicyanomethylacetate molecule $\left[(\mathrm{NC})_{2} \mathrm{C}-\mathrm{CO}_{2} \mathrm{CH}_{3}\right]$. Meanwhile, the reaction of CoCl_{2}. $6 \mathrm{H}_{2} \mathrm{O}, \mathrm{CN}-$ from TCNE, and bpy provided a complex $\left[\mathrm{Co}(\mathrm{CN})_{2}(\mathrm{bpy})_{2}\right]$.

The infrared spectrum of $\mathbf{1}$ shows two $v(\mathrm{C} \equiv \mathrm{N})$ stretches at 2192 and $2160 \mathrm{~cm}^{-1}$ at lower energies than free TCNE (2255 , and $2216 \mathrm{~cm}^{-1}$), assigning to two different cyanide modes of $\mathbf{1}$. It is also noteworthy that two sharp features that appear at 1654,1606 and $1111 \mathrm{~cm}^{-1}$ are assigned to the stretching of the hydrolyzed TCNE molecule $\left(\left[(\mathrm{NC})_{2} \mathrm{C}-\mathrm{CO}_{2} \mathrm{CH}_{3}\right]\right)$.

The absorption spectrum of compound $\mathbf{1}$ is shown in Fig. 1, the two longwavelength absorption bands (393 and 414 nm) can be attributed to an intra-ligand transition of dicyanomethylacetate, which are similar to that of TCNE (see supporting information).

Fig. 1. Absorption spectrum of $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{CN}$.

2.2. Structure of compound 1

The compound 1 crystallizes in space group $P 2(1) / n$, with two formula units present per unit cell. As shown in Figs. 2 and 3, compound 1 consists of one $\left[\mathrm{Co}(\mathrm{CN})_{2}(\mathrm{bpy})_{2}\right]$ unit, one dicyanomethylacetate molecule, and two $\mathrm{H}_{2} \mathrm{O}$ molecules.

A

B

Scheme 1.

Fig. 2. The ORTEP view of $\mathbf{1}\left\{\left[\mathrm{Co}(\text { bpy })_{2} \mathrm{CN}_{2}\right]\left[(\mathrm{NC})_{2} \mathrm{C}-\mathrm{CO}_{2} \mathrm{CH}_{3}\right]\right\} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Fig. 3. Crystal packing diagram of compound 1.

The $\mathrm{C} \equiv \mathrm{N}$ distances do not show any significant changes, which range from $1.146(2)$, to $1.154(3) \AA$. The average $\mathrm{C}-\mathrm{CN}$ distance of $1.403(3) \AA$ is $0.032 \AA$ shorter than that observed for the free TCNE ($1.435 \AA$). Dicyanomethylacetate has the NC-C-CN bond angle of $117.74(18)^{\circ}$, which is similar to the observed NC-C-CN angles of the free $\operatorname{TCNE}\left(116.5(12)^{\circ}\right)$ in accord with its sp^{2} central carbon atom [2b].

For Co complex unit, the cobalt atom is surrounded nearly octahedral by four nitrogen atoms from the bpy ligands and two carbon atoms of the cyano groups, which are in cis positions.

2.3. Electrochemical properties

The free TCNE molecule undergoes two reversible oneelectron reductions at -0.95 and 0.22 V vs. the saturated calomel electrode (SCE) in $\mathrm{CH}_{3} \mathrm{CN}$ [1], which is in accord with reversible two-step reductions. The title compound $\mathbf{1}$ exhibits a reversible one-electron redox process at 0.04 V , which is assigned to that of $\mathrm{Co}^{3+} / \mathrm{Co}^{2+}$ redox couple and two irreversible oxidation processes at 0.26 and 0.61 V , assigning to that of bpy and dicyanomethylacetate (Fig. 4).

Fig. 4. Cyclic voltammogram of $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{CN} / 0.1 \mathrm{M} \quad \mathrm{Bu}_{4} \mathrm{ClO}_{4}$ at $100 \mathrm{mV} \mathrm{s}^{-1}$ scan rate.

3. Experimental

$\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, bpy and TCNE were purchased from commercial sources and used as received.

3.1. Physical measurements

Infrared spectrum was recorded (in the $4000-400 \mathrm{~cm}^{-1}$) as KBr disks on a Bruker 1600 FTIR spectrometer. Electronic spectra were recorded on a Hitachi U-3010 (UV-Vis) spectrophotometer for the solution in $\mathrm{CH}_{3} \mathrm{CN}$. Electrochemical experiments were carried out with an Auto Lab Instrument with a Platinum wire working electrode, a platinum plate counter electrode, and a standard calomel electrode (SCE) as the reference electrode. For the experiments performed in $\mathrm{CH}_{3} \mathrm{CN}$ as solvent (ca. $1.2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$) containing in $0.1 \mathrm{~mol} \mathrm{~L}^{-1}$ tetra- n-butylammonium perchlorate (TBAP) as supporting electrolyte, the potentials were referenced to an SCE electrode.

3.2. Synthesis of compound 1

All synthetic procedures were performed anaerobically. After addition of TCNE ($0.13 \mathrm{~g}, 1 \mathrm{mmol}$) in methanol $(20 \mathrm{~mL})$ to the solution containing $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.238 \mathrm{~g}$, $1 \mathrm{mmol})$ and bpy ($0.31 \mathrm{~g}, 2 \mathrm{mmol}$) in methanol (20 mL), the mixture was stirred at room temperature for 1 h . The solution color turned from red to deep yellow. Single crystals were obtained from the filtrate which was allowed to stand at room temperature for several days, collected by filtration, and dried in vacuo ($0.212 \mathrm{~g}, 36.4 \%$). Anal. Calc. for $\mathrm{C}_{54} \mathrm{H}_{42} \mathrm{Co}_{2} \mathrm{~N}_{16} \mathrm{O}_{6}$: C, 57.4; H, 3.72; N, 19.84. Found: C, $57.85 ; \mathrm{H}, 3.73$; N, 19.73\%. IR bands (KBr pellets, cm^{-1}): $v=2192(\mathrm{~m}), 2160(\mathrm{~s})(v(\mathbf{C} \equiv \mathbf{N})) ; v=1654(\mathrm{~s}), 1606$ (s) $\left(v\left(-\mathrm{CO}_{2}^{-}\right)\right) ; v=1111$ (s) $(v(-\mathrm{C}-\mathrm{O}-\mathrm{C})) ;\left[\mathrm{CH}_{3} \mathrm{CN}, \lambda_{\max } / \mathrm{nm}\right.$ $\left.\left(\epsilon / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)\right]: 232\left(6.5 \times 10^{4}\right), 305\left(2.5 \times 10^{4}\right), 393$ (460), 414 (409).

3.3. X-ray crystallography

Data were collected with a Bruker SMART CCD area detector using graphite monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \mathrm{~A}$) at room temperature. All empirical absorption corrections were applied by using the sadabs program [9]. The structures were solved using direct methods and the corresponding non-hydrogen atoms were refined anisotropically. All the hydrogen atoms of the ligands were placed in calculated positions with fixed isotropic thermal parameters and included in the structure factor calculations in the final stage of full-matrix leastsquares refinement. All calculations were performed using

Table 1
Crystallographic data for $\mathbf{1}$

$\mathbf{1}$	
Empirical formula	$\mathrm{C}_{54} \mathrm{H}_{46} \mathrm{Co}_{2} \mathrm{~N}_{16} \mathrm{O}_{8}$
Formula weight	1164.93
$\lambda(\AA)$	$0.71073 \AA$
Crystal system	Monoclinic
Space group	$P 2(1) / n$
$a(\AA \AA)$	$13.3368(17)$
$b(\AA)$	$12.5299(16)$
$c(\AA)$	$16.074(2)$
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	$94.6320(10)$
$\gamma\left({ }^{\circ}\right)$	90
$V\left(\AA^{3}\right)$	$2677.3(6)$
Z	2
$D_{\text {calc }}\left(\right.$ Mg m ${ }^{-3}$)	1.445
$F(000)$	1200
θ Range for data collection $\left({ }^{\circ}\right)$	$2.51-25.50$
Reflections collected/unique	$19894 / 4981$
Maximum and minimum transmission	0.7418 and 0.7328
Data/restraints/parameters	$4981 / 0 / 362$
Goodness-of-fit on F^{2}	1.036
Final R indices $[I>2 \sigma(I)]$	$R_{1}=0.0270, w R_{2}=0.0694$
R indices (all data)	$R_{1}=0.0325, w R_{2}=0.0731$

Table 2
Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for complex 1

Bond distances (\AA)			
$\mathrm{Co}(1)-\mathrm{C}(21)$	$1.8846(17)$	$\mathrm{Co}(1)-\mathrm{C}(22)$	$1.8875(17)$
$\mathrm{Co}(1)-\mathrm{N}(1)$	$1.9352(13)$	$\mathrm{Co}(1)-\mathrm{N}(3)$	$1.9356(13)$
$\mathrm{Co}(1)-\mathrm{N}(4)$	$1.9702(13)$	$\mathrm{Co}(1)-\mathrm{N}(2)$	$1.9745(13)$
$\mathrm{O}(1)-\mathrm{C}(24)$	$1.361(2)$	$\mathrm{O}(1)-\mathrm{C}(27)$	$1.450(3)$
$\mathrm{O}(2)-\mathrm{C}(24)$	$1.213(2)$	$\mathrm{N}(5)-\mathrm{C}(21)$	$1.146(2)$
$\mathrm{N}(6)-\mathrm{C}(22)$	$1.148(2)$	$\mathrm{N}(7)-\mathrm{C}(25)$	$1.149(2)$
$\mathrm{N}(8)-\mathrm{C}(26)$	$1.154(3)$	$\mathrm{C}(23)-\mathrm{C}(26)$	$1.404(3)$
$\mathrm{C}(23)-\mathrm{C}(25)$	$1.406(3)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.432(3)$
Bond Angles $\left(^{\circ}\right)$			
$\mathrm{C}(21)-\mathrm{Co}(1)-\mathrm{C}(22)$	$88.16(7)$	$\mathrm{C}(24)-\mathrm{O}(1)-\mathrm{C}(27)$	$114.99(18)$
$\mathrm{N}(5)-\mathrm{C}(21)-\mathrm{Co}(1)$	$176.76(15)$	$\mathrm{N}(6)-\mathrm{C}(22)-\mathrm{Co}(1)$	$176.68(16)$
$\mathrm{C}(26)-\mathrm{C}(23)-\mathrm{C}(25)$	$117.74(18)$	$\mathrm{C}(26)-\mathrm{C}(23)-\mathrm{C}(24)$	$118.74(17)$
$\mathrm{C}(25)-\mathrm{C}(23)-\mathrm{C}(24)$	$123.47(17)$	$\mathrm{O}(2)-\mathrm{C}(24)-\mathrm{O}(1)$	$122.27(19)$
$\mathrm{O}(2)-\mathrm{C}(24)-\mathrm{C}(23)$	$124.98(19)$	$\mathrm{O}(1)-\mathrm{C}(24)-\mathrm{C}(23)$	$112.74(16)$
$\mathrm{N}(7)-\mathrm{C}(25)-\mathrm{C}(23)$	$177.7(2)$	$\mathrm{N}(8)-\mathrm{C}(26)-\mathrm{C}(23)$	$179.0(2)$.

[^1]the shelxtl system of computer program [10]. Details of the crystal parameters, data collection and refinement for compound 1 are listed in Table 1, and selected bond distances and angles are given in Table 2.

4. Conclusions

In the presence of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, TCNE reacts with $\mathrm{CH}_{3} \mathrm{OH}$ to give a dicyanomethylacetate molecule, which is the first example from TCNE. The reactivity of TCNE with other metal centers, for example, nickel and iron complexes are being under further investigation.

Acknowledgements

This work was supported by the Research Foundation for Returned Chinese Scholars Overseas of Chinese Education Ministry (No. B7050170). We also thank the South China University of Technology for financial support (Grant Nos. B15-Y1060240, B15-Y1060230 and B15Y1060340).

Appendix A. Supplementary material

CCDC 662604 contains the supplementary crystallographic data for $\mathbf{1}$. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2008.01.044.

References

[1] (a) W. Kaim, M. Moscherosch, Coord. Chem. Rev. 129 (1994) 157; (b) A.J. Fatiadi, Synthesis (1986) 249.
[2] (a) W.J. Middleton, E.L. Little, D.D. Coffman, V.A. Engelhardt, J. Am. Chem. Soc. 80 (1958) 2795;
(b) J.S. Miller, Angew. Chem., Int. Ed. Engl. 45 (2006) 2508.
[3] F. Conan, B. Le Gall, J-M. Kerbaol, S. Le Stang, J. Sala-Pala, Y. Le Mest, J. Bacsa, X. Ouyang, K.R. Dunbar, C.F. Campana, Inorg. Chem. 43 (2004) 3673.
[4 J.S. Miller, A.J. Epstein, Angew. Chem., Int. Ed. Engl. 33 (1994) 385. [5] J.S. Miller, Interface 11 (2002) 22.
[6] G.T. Yee, J.M. Manriquez, D.A. Dixon, R.S. McLean, D.M. Groski, R.B. Flippen, K.S. Narayan, A.J. Epstein, J.S. Miller, Adv. Mater. 3 (1991) 309.
[7] J.M. Manriquez, G.T. Yee, R.S. McLean, A.J. Epstein, J.S. Miller, Science 252 (1991) 1415.
[8] J.-H. Her, P.W. Stephens, K.I. Pokhdnya, M. Bonner, J.S. Miller, Angew. Chem., Int. Ed. Engl. 46 (2007) 1521.
[9] G.M. Sheldrick, Sadabs, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Göttingen, Germany, 1996.
[10] G.M. Sheldrick, shelxs 97, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1997.

[^0]: ${ }^{*}$ Corresponding author. Tel.: +86 2038825665 ; fax: +86 2087112906 .
 E-mail address: shzhzhan@scut.edu.cn (S.-Z. Zhan).

[^1]: Symmetry transformations used to generate equivalent atoms: x, y, z; $-x+1 / 2, y+1 / 2,-z+1 / 2 ;-x,-y,-z ; x-1 / 2,-y-1 / 2, z-1 / 2$.

